8-(927)-977-80-70 web-i-seo@yandex.ru
Режим работы: 10-00 до 20-00 МСК

Вы нашли нас по запросу -"Качественное сравнение методов сортировки Клин" - это лучшая рекомендация для подрядчика SEO продвижения в городе Клин или по России!

Качественное сравнение методов сортировки

Сортировка — часто встречается в работе разработчика. В то же время это высоко нагруженный процесс, который может существенно повлиять на скорость всего приложения. Потому исследуем вопрос алгоритмов сортировки на Python, рассмотрим наиболее известные варианты и определимся с наиболее быстрым из них. В добрый путь…

Математические Параметры алгоритмов:

  • Временная сложность: определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Характеризует ожидаемое общее тактовое время (ОТВ), где такт это одна операция. Прямо влияет на Время исполнения, однако ОТВ и реальные временные затраты не совсем одно и тоже. Временная сложность отражает количество операций, но для разных алгоритмов скорость выполнения операций разное, в результате скорость алгоритмов с одной и той же временной сложностью, могут существенно отличаться.
  • Пространство сложности: работает аналогично временной сложности. Характеризует — объёмы ресурсов необходимых для исполнения (влияет на  требуемый объём оперативной памяти). Например, сортировка выбором имеет пространственную сложность O(1), потому что она хранит только одно минимальное значение и свой индекс для сравнения, максимальное используемое пространство не увеличивается с размером ввода.
  • Стабильность: нестабильная и стабильная. Отражает устойчивость показателей алгоритма к вариациям содержания сортируемых Последовательностей и к стартовым условиям сортировки (Например: в ряде алгоритмов базовый элемент сравнения выбирается случайным образом, или вариации значения первого элемента последовательности. Это может существенно влиять на скорость сортировки и её стабильность)

Конечно нас интересует результируещее реальное время работы и сравнительная скорость, но математические параметры алгоритмов дают нам экспресс оценку ожиданий результатов тестирования. И в целом их полезно знать для правильного проектирования програмных систем и приложений.

Ниже приведены основные виды сортировки, вместе с образцами программного кода.

Пузырьковая сортировка:

Один из самых известных методов сортировки, в каком то смысле «классический» или «хрестоматийный» метод. Его часто используют в университетах для объяснения базовых принципов алгоритмов сортировки.
Принцип пузырьковой сортировки заключается в парном обходе последовательности данных, их парном сравнении и парной сортировке. Если во время обхода обнаружены два смежных элемента, а левый элемент больше правого, выполняется обмен местами. Так, словно «пузырьки воздуха сквозь воду», большие элементы «просачиваются» к началу, а меньшие «оседают» в конце. Для практического применения, этот алгоритм сегодня слишком медленный.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: стабильная
# Пузырьковая сортировка
def bubble_sort(list):
    l = len(list)
    for i in range(l-1,0,-1):
        for j in range(i):
            if list[j] > list[j+1]:
                list[j],list[j+1] = list[j+1],list[j]
    return list

 

Выборочная сортировка ( Сортировка Выборкой ):

Принцип Выборочной сортировки заключается в том, чтобы сначала найти наименьший элемент в начальном массиве и заменить его на i = 0, затем найти наименьший элемент в оставшихся элементах и заменить его на i = 1 и так далее. Пока не найден второй по величине элемент, поменяйте его местами в положение n-2. Это завершит сортировку.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: нестабильная
# Сортировка выборкой
def select_sort(list):
    length = len(list)
    for i in range(length):
        min = i
        for j in range(i,length):
            if list[j] < list[min]:
                min = j
        list[i],list[min] = list[min],list[i]
    return list

Сортировка Вставками:

Предполагается, что первый элемент списка отсортирован. Переходим к следующему элементу, обозначим его х. Если х больше первого, оставляем его на своём месте. Если он меньше, копируем его на вторую позицию, а х устанавливаем как первый элемент.

Переходя к другим элементам несортированного сегмента, перемещаем более крупные элементы в отсортированном сегменте вверх по списку, пока не встретим элемент меньше x или не дойдём до конца списка. В первом случае x помещается на правильную позицию.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: стабильная
# Сортировка Вставками
def insert_sort(list):
    length = len(list)
    for i in range(1,length):
        for j in range(i):
            if list[j] > list[j+1]:
                list[j],list[j+1] = list[j+1],list[j]
    return list

Пирамидальная сортировка ( Сортировка кучи )

Основан прежде всего на преобразовании исходной Последовательности в элемент структурного типа — heap (куча). Вы можете использовать характеристики массива, чтобы быстро найти элемент по указанному индексу. Куча делится на большую корневую кучу и небольшую корневую кучу, которые являются полностью бинарными деревьями — Max Heap. Требование к большой корневой куче состоит в том, чтобы значение каждого узла не превышало значение его родительского узла, то есть A [PARENT [i]]> = A [i]. При неубывающем упорядочении массива требуется большая корневая куча, поскольку в соответствии с требованиями большой корневой кучи наибольшее значение должно быть в верхней части кучи.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (1)
  • Стабильность: нестабильная
# Пирамидальная сортировка
def heap_sort(array):
    def heap_adjust(parent):
        child = 2 * parent + 1  # left child
        while child < len(heap):
            if child + 1 < len(heap):
                if heap[child + 1] > heap[child]:
                    child += 1  # right child
            if heap[parent] >= heap[child]:
                break
            heap[parent], heap[child] = \
                heap[child], heap[parent]
            parent, child = child, 2 * child + 1

    heap, array = array.copy(), []
    for i in range(len(heap) // 2, -1, -1):
        heap_adjust(i)
    while len(heap) != 0:
        heap[0], heap[-1] = heap[-1], heap[0]
        array.insert(0, heap.pop())
        heap_adjust(0)
    return array

Сортировка объединением ( слиянием ):

Забегая вперёд стоит отметить, что это одна из самых быстрых сортировок. Чем то этот алгоритм похож на Пузырьковую сортировку, но «пузырьки» всплывают относительно подмножества смежных элементов последовательности, до тех пор пока она удовлетворяет условиям «всплытия» относительно вержнего элемента парного Подмножества.
Что за «Парное подмножество»? — спросите Вы.

Сортировка объединением (merge) — это разделениена 2 примерно равных парных Подмножества, а затем производится слияние Парных подмножеств с сортировкой относительно текущих указателей (св реализациях с применением указателей) или начальных (в реализациях с pop()) элементов друг друга.

Надо отметить, что если слияние производится методом pop(), соответственно в ходе слияния — добавляемый в результат эелемент «выталкивается» из соответствующего парного Подмножества. Во первых, это изменяет сами Подмножества. Во вторых,  удаление нулевого елемента «стоит дорого», потому лучше использовать реверсию (сравнивая Подмножества с конца — pop (P[-1])), это в разы ускоряет функцию.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (1)
  • Стабильность: стабильная

Пример простой сортировки слиянием со смещением указателя:

def simple_merge(list1, list2):
    i, j = 0, 0
    res = []
    while i < len(list1) and j < len(list2):
        if list1[i] < list2[j]:
            res.append(list1[i])
            i += 1
        else:
            res.append(list2[j])
            j += 1
    res += list1[i:]
    res += list2[j:] 
    # один из list1[i:] и list2[j:] будет уже пустой, поэтому добавится только нужный остаток
    return res

Пример слияния со смещением указателя с использованием генераторов. Он значительно быстрее, и возвращает генератор значения которого могут подаватся в список:

def gen_merge_inner(it1, it2):
    el1 = next(it1, None)
    el2 = next(it2, None)
    while el1 is not None or el2 is not None:
        if el1 is None or (el2 is not None and el2 < el1):
            yield el2
            el2 = next(it2, None)
        else:
            yield el1
            el1 = next(it1, None)

def gen_merge(list1, list2):
    return list(gen_merge_inner(iter(list1), iter(list2))) # из генератора получаем список

А вот сортирорвка слиянием с pop():

# Сортировка слиянием
def merge_sort(array):
    def merge_arr(arr_l, arr_r):
        array = []
        while len(arr_l) and len(arr_r):
            if arr_l[0] <= arr_r[0]:
                array.append(arr_l.pop(0))
            elif arr_l[0] > arr_r[0]:
                array.append(arr_r.pop(0))
        if len(arr_l) != 0:
            array += arr_l
        elif len(arr_r) != 0:
            array += arr_r
        return array

# Сортировка слиянием с Реверсом
def reverse_pop_merge(list1, list2): 
    result = [] 
    while list1 and list2: 
         result.append((list1 if list1[-1] > list2[-1] else list2).pop(-1)) 
    return (result + list1[-1::-1] + list2[-1::-1])[-1::-1]
 

Быстрая сортировка

Этот алгоритм также относится к алгоритмам «разделяй и властвуй». Его используют чаще других алгоритмов, описанных в этой статье. При правильной конфигурации он чрезвычайно эффективен и не требует дополнительной памяти, в отличие от сортировки слиянием. Массив разделяется на две части по разные стороны от опорного элемента. В процессе сортировки элементы меньше опорного помещаются перед ним, а равные или большие —позади.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (nlog₂n)
  • Стабильность: нестабильная

Алгоритм

Быстрая сортировка начинается с разбиения списка и выбора одного из элементов в качестве опорного. А всё остальное передвигаем так, чтобы этот элемент встал на своё место. Все элементы меньше него перемещаются влево, а равные и большие элементы перемещаются вправо.

Реализация

Существует много вариаций данного метода. Способ разбиения массива, рассмотренный здесь, соответствует схеме Хоара (создателя данного алгоритма).

def partition(nums, low, high):  
    # Выбираем средний элемент в качестве опорного
    # Также возможен выбор первого, последнего
    # или произвольного элементов в качестве опорного
    pivot = nums[(low + high) // 2]
    i = low - 1
    j = high + 1
    while True:
        i += 1
        while nums[i] < pivot:
            i += 1

        j -= 1
        while nums[j] > pivot:
            j -= 1

        if i >= j:
            return j

        # Если элемент с индексом i (слева от опорного) больше, чем
        # элемент с индексом j (справа от опорного), меняем их местами
        nums[i], nums[j] = nums[j], nums[i]

def quick_sort(nums):  
    # Создадим вспомогательную функцию, которая вызывается рекурсивно
    def _quick_sort(items, low, high):
        if low < high:
            # This is the index after the pivot, where our lists are split
            split_index = partition(items, low, high)
            _quick_sort(items, low, split_index)
            _quick_sort(items, split_index + 1, high)

    _quick_sort(nums, 0, len(nums) - 1)

# Проверяем, что оно работает
random_list_of_nums = [22, 5, 1, 18, 99]  
quick_sort(random_list_of_nums)  
print(random_list_of_nums) 

Или так:

# Быстрая сортировка 2
def quick_sort(list):
    if list == []:
        return []
    else:
        first = list[0]
        left = quick_sort([l for l in list[1:]if l < first])
        right = quick_sort([l for l in list[1:] if l > first])
        return left +[first] + right

Время выполнения Быстрой сортировки

В среднем время выполнения быстрой сортировки составляет O(n log n).

Обратите внимание, что алгоритм быстрой сортировки будет работать медленно, если опорный элемент равен наименьшему или наибольшему элементам списка. При таких условиях, в отличие от сортировок кучей и слиянием, обе из которых имеют в худшем случае время сортировки O(n log n), быстрая сортировка в худшем случае будет выполняться O(n²).

 

Сортировка по холмам ( Hill или Shell )

сортировка по холмам — группировка записей по определенному приращению индекса и использование алгоритма прямой вставки для каждой группы; по мере того, как приращение постепенно уменьшается, каждая группа содержит все больше и больше ключевых слов. Когда приращение уменьшается до 1, весь файл просто собирается в группу, и алгоритм завершается.

def shell_sort(slist):
    gap = len(slist)
    while gap > 1:
        gap = gap // 2
        for i in range(gap, len(slist)):
            for j in range(i % gap, i, gap):
                if slist[i] < slist[j]:
                    slist[i], slist[j] = slist[j], slist[i]
    return slist

 

2. Протестируйте и проверьте


import time
from main import *
import sys
sys.setrecursionlimit(100000000)

def timeCount(func):
    def wrapper(*arg,**kwarg):
        start = time.clock()
        func(*arg,**kwarg)
        end =time.clock()
        print ('used:', end - start)
    return wrapper

class Executor(object):
    def __init__(self, func, *args, **kwargs):
        self.func = func
        self.args = args
        self.kwargs = kwargs
        self.do()

    @timeCount
    def do(self):
        print('-----start:', self.func, '-----')
        self.ret = self.func(*self.args, **self.kwargs)

    def __del__(self):
        print('-----end-----')


class TestClass(object):
    list =[]

    def testreadlist(self):
        for line in open('list.txt'):
            self.list.append(line.strip())
        print(self.list)

    # Пузырьковая сортировка
    def testbubble(self):
        Executor(bubble_sort,self.list)

    # Быстрая сортировка
    def testquick(self):
        Executor(quick_sort,self.list)

    # Выбрать сортировку
    def testselect(self):
        Executor(select_sort,self.list)

    # Вставить сортировку
    def testinsert(self):
        Executor(insert_sort,self.list)


    # Сортировка кучи
    def testhead(self):
        Executor(heap_sort,self.list)


    # Merge sort
    def testmerge(self):
        Executor(merge_sort,self.list)


    # Hill Sort
    def testshell(self):
        Executor(shell_sort,self.list)

    def main(self):
       self.testreadlist()
       self.testbubble()
       self.testquick()
       self.testselect()
       self.testinsert()
       self.testhead()
       self.testmerge()
       self.testshell()

if __name__ =='__main__':
    TestClass().main()



Тест 200 данных и 10000 данных, протестированных здесь, но с точки зрения скорости вычисления
1. Самая быстрая сортировка слиянием
2. Bubble sort и Hill сортировка — самые медленные

Самый быстрый алгоритм Сортировки на Python:

Эксперементальными измерениями неоднократно доказано что самыми быстрыми рабочими вариантами сортировки будут реализации с использованием встроеных функций сортировки sorted() или sort(). Тут нет ничего неожиданного, эти функции реализованы на С++ и лишь обёрнуты в интерфейс Python.

Исполняемый код очень прост

Сортировка списка с использованием функции sorted():

 

def sort_merge(list1, list2):
    return sorted(list1 + list2)

Сортировка списка с использованием функции sort():

def sort_merge(list1, list2):
    return (list1 + list2).sort()

Стоит отметить, что последний вариант быстрее, ниже приведены логи тестовых испытаний.

list1 = [i for i in range(1, 200000, 3)]
list2 = [i for i in range(2, 250000, 4)]
%timeit res1 = sorted(list1 + list2)
%timeit res2 = list1 + list2; res2.sort()

 

6.73 ms ± 64.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.43 ms ± 38.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Дата изменения


Индивидуальный Предприниматель Ознобин Р.А.
8-927-977-80-70
Адрес: г. Клин, ул. Строителей, строение 12

Полезная информация по теме - Качественное сравнение методов сортировки Клин

разработка сайта организации Клин

Любой бизнес который заинтересован в привлечении новых клиентов через on-line обращается к нам, потому как создание сайта организации Клин  это первый шаг для выполнения поставленной задачи. Если Вас нет в web сети, то Вас не возможно найти. создание сайта организации Клин включает в себя несколько этапов, которые конечно же лучше всего предоставить одной организации специализирующейся на этом. Такие этапы как создание концепции, дизайна, технического задания, логотипа, программная создание, техническое размещение ресурса на хостинге с правильным подбором доменного имени, проработка функционала сайта — все это достаточно большой объем усилия. Мы стараемся при реализации подобного портала сэкономить Ваше время и финансы, предоставьте всю работу сделать нам, конечно с Вашего одобрения и контроля. Актуальна создание сайтов образовательных организаций Клин, т.к. сегодня развивается онлайн обучение и любому вузу или образовательному учреждению, просто необходимо...

Реализованный проект для сферы грузоперевозок Клин

ООО «Диамант» специализируется на офисных и квартирных переездах, а так же прочих усилийах погрузки и выгрузки в Москве. Заказчик решил заказать вебсайт с простым Лендингом стартовой страницы сайта. Так же планировалось производить самостоятельное размещение информационных материалов, с возможностью редактирования материалов сайта. сайта под ключ составила — 21 400 руб.. Для того что бы заказать вебсайт у нас, вам надо лишь отправить заявку нам на почте или связаться с нами любым из перечисленных в разделе Контакты методов, мы свяжемся с Вами и поможем определится с техническим заданием, дизайном и ценой. Качественное сравнение методов сортировки — получи СКИДКУ 10% ООО «Код Эксперт — РМ» — осуществляет комплексную установку, поддержку и раскрутка сайтов   Индивидуальный Предприниматель Ознобин Р.А.8-927-977-80-70 Адрес: г. Клин, ул. Строителей,...

продвижение сайта в топ Клин

Не зависимо от региона и масштаба Вашего дела, Вам необходимо раскрутка сайта в топ Клин поисковых систем. И.П. Ознобин Р.А. осуществит качественное оказание сервис в области адаптации информации Вашей продукции или усилий. Качественное сравнение методов сортировки — получи СКИДКУ 10% Раскрутка сайта в топ Клин включает в себя несколько обязательных шагов: Выделение и анализ целевой аудитории в web сети, оценка потенциала спроса и конкурентной стратегии оптимизации и раскрутки сайта Подбор ключевых запросов, по которым люди ищут Ваши товары и сервис. На основе анализа составляется семантическое ядро сайта, которое необходимо для правильной ориентации в выдаче поисковых систем. Происходит техническая перенастройка сайта под новую выработанную стратегию адаптации в топ Клин, отладка возможных ошибок, которые могут мешать оптимизации сайта в топ. Анализ и возможное дополнение результата...

Ознобин Роман Александрович Клин

директор ООО «Код Эксперт — РМ», управляющий партнёр ООО «Код Эксперт», CEO, руководитель порталов ; «Позади более 100 сайтов и WEB приложений, десятки организаций и Servers, внедрений и разработок. Но более всего я горжусь победой на конкурсе инновационных порталов Министерства Экономики и Технологий Германии в Гановере, где разрабатываемые нами технологии оптимизации для Linux Os показали реальное ускорение вычислительных процессов с использованием больших массивов данных на 12%!!! А так же благодарностью людей доверивших нам свои заботы и надежды.»  С наилучшими пожеланиями, Ознобин Роман Награды: Призёр (3-е место) на конкурсе инновационных порталов Министерства экономики и технологий Федеративной Республики Германия. Гановер. 10.11.2011 Победитель конкурса Лучший предприниматель Республики Мордовия 2013 года в номинации «Эффективные инновации и новые технологии в малом и среднем бизнесе». Как член команды ООО «Код – Эксперт» в должности...

Услуги ремонта и строительства реализованный нами интернет-проект Клин

Новая on-line визитка — Небольшая профессиональная бригада занимающаяся всеми видами строительных и отделочных работ в Нижнем Новгороде решила заказать недорогой вебсайт. Был заказан не большой инфпортал с перечнем усилий, прайсом и контактами. Простое, но красивое оформление, и слайдер. Базовая цена составила — 9 600 руб. ! наполнение материалами — от 300 до 1000 руб. за страницу  (в зависимости от наличия и объёмов таблиц, фото и текстов). визуальных эффектов — 5 000 руб.. Что бы заказать вебсайт у нас, вам надо лишь отправить заявку с данного сайта или связаться с нами любым из перечисленных в разделе Контакты методов. Мы свяжемся с Вами и поможем определится с техническим заданием, дизайном и ценой. Качественное сравнение методов сортировки — получи СКИДКУ 10% ООО «Код Эксперт — РМ» — общая создание, тех.поддержка и раскрутка в...

стоимость разработки сайта Клин

стоимость разработки сайта Клин зависит от сложности исполнения портала, его индивидуальности и функционала, но мы готовы предложить Вам создание и раскрутка по выгодным ценам в зависимости от поставленной задачи. Если Вы задумались заказать создание портала, то надо знать, что стоимость разработки сайта Клин не всегда гарантирует качество исполнения портала. Основным критерием выбора разработчика должен быть его опыт в этой области. Узнайте сколько будет стоить создание портала под ключ, которая в первую очередь зависит от цели Вашего  дела. Если к примеру on-line визитка будет минимальной по цене, потому как обычно это требует меньше времени работ. Мы создаем качественные сайты визитки за короткий срок. Ознакомьтесь с нашими тарифами разработки и адаптации сайтов, у нас есть выгодные акции и скидки! Закажите у нас корпоративный сайт, цена разработки которого будет дешевле при комплексе работ по производству и оптимизации, при этом мы берем на себя сопровождение, техническое...

заказать разработку сайта Клин

У нас большой выбор гибких тарифов и решений по доступным ценам что бы — заказать установку сайта   Мы изготовим Вам портал за короткие сроки, по выгодной цене, эффективный и прибыльный при выходе Вашего дела на рынок on-line торговли. Сделайте предварительную заявку и мы поможем Вам, выбрав лучший вариант цены и функциональности из доступных, и самый подходящий для задач Вашего дела. Ознакомиться с тарифами и предложениями можно в таблице ниже. Сегодня, если Вы хотите вывести свой бизнес на новый уровень, захватить или увеличить долю рынка Клин, регионе или России, Вам придется заказать  установку и раскрутку сайта, это сервис без которых не может обойтись не один бизнес. Если Вы хотите обновить свой уже существующий сайт для его лучшего позиционирования в поисковых комплексах и увеличения объемов продаж, или заказать портал под ключ с нуля, мы предложим Вам наиболее выгодные цены в Клин и качество обеспеченное 15 летним опытом усилия. Что бы заказать...

стоимость создания сайта Клин

Определите выгодную для себя стоимость разработки сайта Клин которая будет соответствовать целям Вашего дела. Мы готовы предложить Вам от простой визитки компании до сложного корпоративного портала, с внутренними CRM системами и системами обмена данных. Готовы разработать продающий on-line-магазин под ключ или витрину Вашей компании. В стоимость разработки водит ряд действий и сервиса по обслуживанию портала в дальнейшем. Для начала мы подберем для Вас наименование или доменное имя портала. Вы выберете наиболее подходящий и понравившийся Вам домен и при создании стоимость сайтподключ будет включать в себя домен в зоне  com, ru и т.д. Создание сайта стоимость Клин будет включать в себя оплату домена, хостинга где разместиться портал, настройка и размещение платформы, правка платформы под требование и условия Вашего дела. Возможно добавить в перечень дизайнерское исполнение портала или оставить стоимость разработки сайта Клин под ключ где Вам будут предложены типовые варианты...