8-(927)-977-80-70 web-i-seo@yandex.ru
Режим работы: 10-00 до 20-00 МСК

Вы нашли нас по запросу -"Качественное сравнение методов сортировки ������������-����������������" - это лучшая рекомендация для подрядчика SEO продвижения в городе ������������-���������������� или по России!

Качественное сравнение методов сортировки

Сортировка — часто встречается в работе разработчика. В то же время это высоко нагруженный процесс, который может существенно повлиять на скорость всего приложения. Потому исследуем вопрос алгоритмов сортировки на Python, рассмотрим наиболее известные варианты и определимся с наиболее быстрым из них. В добрый путь…

Математические Параметры алгоритмов:

  • Временная сложность: определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Характеризует ожидаемое общее тактовое время (ОТВ), где такт это одна операция. Прямо влияет на Время исполнения, однако ОТВ и реальные временные затраты не совсем одно и тоже. Временная сложность отражает количество операций, но для разных алгоритмов скорость выполнения операций разное, в результате скорость алгоритмов с одной и той же временной сложностью, могут существенно отличаться.
  • Пространство сложности: работает аналогично временной сложности. Характеризует — объёмы ресурсов необходимых для исполнения (влияет на  требуемый объём оперативной памяти). Например, сортировка выбором имеет пространственную сложность O(1), потому что она хранит только одно минимальное значение и свой индекс для сравнения, максимальное используемое пространство не увеличивается с размером ввода.
  • Стабильность: нестабильная и стабильная. Отражает устойчивость показателей алгоритма к вариациям содержания сортируемых Последовательностей и к стартовым условиям сортировки (Например: в ряде алгоритмов базовый элемент сравнения выбирается случайным образом, или вариации значения первого элемента последовательности. Это может существенно влиять на скорость сортировки и её стабильность)

Конечно нас интересует результируещее реальное время работы и сравнительная скорость, но математические параметры алгоритмов дают нам экспресс оценку ожиданий результатов тестирования. И в целом их полезно знать для правильного проектирования програмных систем и приложений.

Ниже приведены основные виды сортировки, вместе с образцами программного кода.

Пузырьковая сортировка:

Один из самых известных методов сортировки, в каком то смысле «классический» или «хрестоматийный» метод. Его часто используют в университетах для объяснения базовых принципов алгоритмов сортировки.
Принцип пузырьковой сортировки заключается в парном обходе последовательности данных, их парном сравнении и парной сортировке. Если во время обхода обнаружены два смежных элемента, а левый элемент больше правого, выполняется обмен местами. Так, словно «пузырьки воздуха сквозь воду», большие элементы «просачиваются» к началу, а меньшие «оседают» в конце. Для практического применения, этот алгоритм сегодня слишком медленный.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: стабильная
# Пузырьковая сортировка
def bubble_sort(list):
    l = len(list)
    for i in range(l-1,0,-1):
        for j in range(i):
            if list[j] > list[j+1]:
                list[j],list[j+1] = list[j+1],list[j]
    return list

 

Выборочная сортировка ( Сортировка Выборкой ):

Принцип Выборочной сортировки заключается в том, чтобы сначала найти наименьший элемент в начальном массиве и заменить его на i = 0, затем найти наименьший элемент в оставшихся элементах и заменить его на i = 1 и так далее. Пока не найден второй по величине элемент, поменяйте его местами в положение n-2. Это завершит сортировку.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: нестабильная
# Сортировка выборкой
def select_sort(list):
    length = len(list)
    for i in range(length):
        min = i
        for j in range(i,length):
            if list[j] < list[min]:
                min = j
        list[i],list[min] = list[min],list[i]
    return list

Сортировка Вставками:

Предполагается, что первый элемент списка отсортирован. Переходим к следующему элементу, обозначим его х. Если х больше первого, оставляем его на своём месте. Если он меньше, копируем его на вторую позицию, а х устанавливаем как первый элемент.

Переходя к другим элементам несортированного сегмента, перемещаем более крупные элементы в отсортированном сегменте вверх по списку, пока не встретим элемент меньше x или не дойдём до конца списка. В первом случае x помещается на правильную позицию.

  • Сложность времени: O (n²)
  • Пространство сложности: O (1)
  • Стабильность: стабильная
# Сортировка Вставками
def insert_sort(list):
    length = len(list)
    for i in range(1,length):
        for j in range(i):
            if list[j] > list[j+1]:
                list[j],list[j+1] = list[j+1],list[j]
    return list

Пирамидальная сортировка ( Сортировка кучи )

Основан прежде всего на преобразовании исходной Последовательности в элемент структурного типа — heap (куча). Вы можете использовать характеристики массива, чтобы быстро найти элемент по указанному индексу. Куча делится на большую корневую кучу и небольшую корневую кучу, которые являются полностью бинарными деревьями — Max Heap. Требование к большой корневой куче состоит в том, чтобы значение каждого узла не превышало значение его родительского узла, то есть A [PARENT [i]]> = A [i]. При неубывающем упорядочении массива требуется большая корневая куча, поскольку в соответствии с требованиями большой корневой кучи наибольшее значение должно быть в верхней части кучи.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (1)
  • Стабильность: нестабильная
# Пирамидальная сортировка
def heap_sort(array):
    def heap_adjust(parent):
        child = 2 * parent + 1  # left child
        while child < len(heap):
            if child + 1 < len(heap):
                if heap[child + 1] > heap[child]:
                    child += 1  # right child
            if heap[parent] >= heap[child]:
                break
            heap[parent], heap[child] = \
                heap[child], heap[parent]
            parent, child = child, 2 * child + 1

    heap, array = array.copy(), []
    for i in range(len(heap) // 2, -1, -1):
        heap_adjust(i)
    while len(heap) != 0:
        heap[0], heap[-1] = heap[-1], heap[0]
        array.insert(0, heap.pop())
        heap_adjust(0)
    return array

Сортировка объединением ( слиянием ):

Забегая вперёд стоит отметить, что это одна из самых быстрых сортировок. Чем то этот алгоритм похож на Пузырьковую сортировку, но «пузырьки» всплывают относительно подмножества смежных элементов последовательности, до тех пор пока она удовлетворяет условиям «всплытия» относительно вержнего элемента парного Подмножества.
Что за «Парное подмножество»? — спросите Вы.

Сортировка объединением (merge) — это разделениена 2 примерно равных парных Подмножества, а затем производится слияние Парных подмножеств с сортировкой относительно текущих указателей (св реализациях с применением указателей) или начальных (в реализациях с pop()) элементов друг друга.

Надо отметить, что если слияние производится методом pop(), соответственно в ходе слияния — добавляемый в результат эелемент «выталкивается» из соответствующего парного Подмножества. Во первых, это изменяет сами Подмножества. Во вторых,  удаление нулевого елемента «стоит дорого», потому лучше использовать реверсию (сравнивая Подмножества с конца — pop (P[-1])), это в разы ускоряет функцию.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (1)
  • Стабильность: стабильная

Пример простой сортировки слиянием со смещением указателя:

def simple_merge(list1, list2):
    i, j = 0, 0
    res = []
    while i < len(list1) and j < len(list2):
        if list1[i] < list2[j]:
            res.append(list1[i])
            i += 1
        else:
            res.append(list2[j])
            j += 1
    res += list1[i:]
    res += list2[j:] 
    # один из list1[i:] и list2[j:] будет уже пустой, поэтому добавится только нужный остаток
    return res

Пример слияния со смещением указателя с использованием генераторов. Он значительно быстрее, и возвращает генератор значения которого могут подаватся в список:

def gen_merge_inner(it1, it2):
    el1 = next(it1, None)
    el2 = next(it2, None)
    while el1 is not None or el2 is not None:
        if el1 is None or (el2 is not None and el2 < el1):
            yield el2
            el2 = next(it2, None)
        else:
            yield el1
            el1 = next(it1, None)

def gen_merge(list1, list2):
    return list(gen_merge_inner(iter(list1), iter(list2))) # из генератора получаем список

А вот сортирорвка слиянием с pop():

# Сортировка слиянием
def merge_sort(array):
    def merge_arr(arr_l, arr_r):
        array = []
        while len(arr_l) and len(arr_r):
            if arr_l[0] <= arr_r[0]:
                array.append(arr_l.pop(0))
            elif arr_l[0] > arr_r[0]:
                array.append(arr_r.pop(0))
        if len(arr_l) != 0:
            array += arr_l
        elif len(arr_r) != 0:
            array += arr_r
        return array

# Сортировка слиянием с Реверсом
def reverse_pop_merge(list1, list2): 
    result = [] 
    while list1 and list2: 
         result.append((list1 if list1[-1] > list2[-1] else list2).pop(-1)) 
    return (result + list1[-1::-1] + list2[-1::-1])[-1::-1]
 

Быстрая сортировка

Этот алгоритм также относится к алгоритмам «разделяй и властвуй». Его используют чаще других алгоритмов, описанных в этой статье. При правильной конфигурации он чрезвычайно эффективен и не требует дополнительной памяти, в отличие от сортировки слиянием. Массив разделяется на две части по разные стороны от опорного элемента. В процессе сортировки элементы меньше опорного помещаются перед ним, а равные или большие —позади.

  • Сложность времени: O (nlog₂n)
  • Пространство сложности: O (nlog₂n)
  • Стабильность: нестабильная

Алгоритм

Быстрая сортировка начинается с разбиения списка и выбора одного из элементов в качестве опорного. А всё остальное передвигаем так, чтобы этот элемент встал на своё место. Все элементы меньше него перемещаются влево, а равные и большие элементы перемещаются вправо.

Реализация

Существует много вариаций данного метода. Способ разбиения массива, рассмотренный здесь, соответствует схеме Хоара (создателя данного алгоритма).

def partition(nums, low, high):  
    # Выбираем средний элемент в качестве опорного
    # Также возможен выбор первого, последнего
    # или произвольного элементов в качестве опорного
    pivot = nums[(low + high) // 2]
    i = low - 1
    j = high + 1
    while True:
        i += 1
        while nums[i] < pivot:
            i += 1

        j -= 1
        while nums[j] > pivot:
            j -= 1

        if i >= j:
            return j

        # Если элемент с индексом i (слева от опорного) больше, чем
        # элемент с индексом j (справа от опорного), меняем их местами
        nums[i], nums[j] = nums[j], nums[i]

def quick_sort(nums):  
    # Создадим вспомогательную функцию, которая вызывается рекурсивно
    def _quick_sort(items, low, high):
        if low < high:
            # This is the index after the pivot, where our lists are split
            split_index = partition(items, low, high)
            _quick_sort(items, low, split_index)
            _quick_sort(items, split_index + 1, high)

    _quick_sort(nums, 0, len(nums) - 1)

# Проверяем, что оно работает
random_list_of_nums = [22, 5, 1, 18, 99]  
quick_sort(random_list_of_nums)  
print(random_list_of_nums) 

Или так:

# Быстрая сортировка 2
def quick_sort(list):
    if list == []:
        return []
    else:
        first = list[0]
        left = quick_sort([l for l in list[1:]if l < first])
        right = quick_sort([l for l in list[1:] if l > first])
        return left +[first] + right

Время выполнения Быстрой сортировки

В среднем время выполнения быстрой сортировки составляет O(n log n).

Обратите внимание, что алгоритм быстрой сортировки будет работать медленно, если опорный элемент равен наименьшему или наибольшему элементам списка. При таких условиях, в отличие от сортировок кучей и слиянием, обе из которых имеют в худшем случае время сортировки O(n log n), быстрая сортировка в худшем случае будет выполняться O(n²).

 

Сортировка по холмам ( Hill или Shell )

сортировка по холмам — группировка записей по определенному приращению индекса и использование алгоритма прямой вставки для каждой группы; по мере того, как приращение постепенно уменьшается, каждая группа содержит все больше и больше ключевых слов. Когда приращение уменьшается до 1, весь файл просто собирается в группу, и алгоритм завершается.

def shell_sort(slist):
    gap = len(slist)
    while gap > 1:
        gap = gap // 2
        for i in range(gap, len(slist)):
            for j in range(i % gap, i, gap):
                if slist[i] < slist[j]:
                    slist[i], slist[j] = slist[j], slist[i]
    return slist

 

2. Протестируйте и проверьте


import time
from main import *
import sys
sys.setrecursionlimit(100000000)

def timeCount(func):
    def wrapper(*arg,**kwarg):
        start = time.clock()
        func(*arg,**kwarg)
        end =time.clock()
        print ('used:', end - start)
    return wrapper

class Executor(object):
    def __init__(self, func, *args, **kwargs):
        self.func = func
        self.args = args
        self.kwargs = kwargs
        self.do()

    @timeCount
    def do(self):
        print('-----start:', self.func, '-----')
        self.ret = self.func(*self.args, **self.kwargs)

    def __del__(self):
        print('-----end-----')


class TestClass(object):
    list =[]

    def testreadlist(self):
        for line in open('list.txt'):
            self.list.append(line.strip())
        print(self.list)

    # Пузырьковая сортировка
    def testbubble(self):
        Executor(bubble_sort,self.list)

    # Быстрая сортировка
    def testquick(self):
        Executor(quick_sort,self.list)

    # Выбрать сортировку
    def testselect(self):
        Executor(select_sort,self.list)

    # Вставить сортировку
    def testinsert(self):
        Executor(insert_sort,self.list)


    # Сортировка кучи
    def testhead(self):
        Executor(heap_sort,self.list)


    # Merge sort
    def testmerge(self):
        Executor(merge_sort,self.list)


    # Hill Sort
    def testshell(self):
        Executor(shell_sort,self.list)

    def main(self):
       self.testreadlist()
       self.testbubble()
       self.testquick()
       self.testselect()
       self.testinsert()
       self.testhead()
       self.testmerge()
       self.testshell()

if __name__ =='__main__':
    TestClass().main()



Тест 200 данных и 10000 данных, протестированных здесь, но с точки зрения скорости вычисления
1. Самая быстрая сортировка слиянием
2. Bubble sort и Hill сортировка — самые медленные

Самый быстрый алгоритм Сортировки на Python:

Эксперементальными измерениями неоднократно доказано что самыми быстрыми рабочими вариантами сортировки будут реализации с использованием встроеных функций сортировки sorted() или sort(). Тут нет ничего неожиданного, эти функции реализованы на С++ и лишь обёрнуты в интерфейс Python.

Исполняемый код очень прост

Сортировка списка с использованием функции sorted():

 

def sort_merge(list1, list2):
    return sorted(list1 + list2)

Сортировка списка с использованием функции sort():

def sort_merge(list1, list2):
    return (list1 + list2).sort()

Стоит отметить, что последний вариант быстрее, ниже приведены логи тестовых испытаний.

list1 = [i for i in range(1, 200000, 3)]
list2 = [i for i in range(2, 250000, 4)]
%timeit res1 = sorted(list1 + list2)
%timeit res2 = list1 + list2; res2.sort()

 

6.73 ms ± 64.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.43 ms ± 38.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Дата изменения


Индивидуальный Предприниматель Ознобин Р.А.
8-927-977-80-70
Адрес: г. ������������-����������������, ул. Строителей, строение 12

Полезная информация по теме - Качественное сравнение методов сортировки ������������-����������������

продвижение сайта цена ������������-����������������

Сделаем раскрутка сайта, цена ������������-���������������� которого устроит Вас и даст хороший результат!закажите раскрутка сайта прямо сейчас, ведь цена на данную усилийу имеет прямое влияние на результат трафика Вашего сайта, что позволяет Вам увеличить продажи, выйти на новые рынки и показать имидж компании. Качественное сравнение методов сортировки — получи СКИДКУ 10% получите бесплатно консультацию нашего специалиста Мы Вас внимательно выслушаем и подробно ответим на все интересующие вопросы. на раскрутка сайта ������������-���������������� складывается из нескольких этапов реализации адаптации в топ. Разработка сайта, анализ рынка и запросов, правильное построение ядра сайта, внешнее раскрутка и внутренняя оптимизация сайта — все это влияет на результат которые в последствии займет Ваш сайт в поисковых комплексах. Компания Индивидуальный...

Раскрутка инстаграмма ������������-����������������

Если Вы хотите сделать свой аккаунт или аккаунт в Инстаграмме Вашего дела популярным, предлагаем выбрать Вам один из тарифов раскрутка инстаграм ������������-����������������, который поможет достигнуть Вашей цели. Основная доля пользователей подзапросов запроса раскрутка инстаграм ������������-���������������� интересуется запросом раскрутка инстагра ������������-����������������, мы же хотим продолжить эту усилийу,в  действительно выгодный и главное правильный портал такой,  как раскрутка инстограмма, раскрутка канала Ютюб или раскрутка группы ВК. ...

Реализованный проект для сферы грузоперевозок ������������-����������������

ООО «Диамант» специализируется на офисных и квартирных переездах, а так же прочих усилийах погрузки и выгрузки в Москве. Заказчик решил заказать вебсайт с простым Лендингом стартовой страницы сайта. Так же планировалось производить самостоятельное размещение информационных материалов, с возможностью редактирования материалов сайта. сайта под ключ составила — 21 400 руб.. Для того что бы заказать вебсайт у нас, вам надо лишь отправить заявку нам на почте или связаться с нами любым из перечисленных в разделе Контакты методов, мы свяжемся с Вами и поможем определится с техническим заданием, дизайном и ценой. Качественное сравнение методов сортировки — получи СКИДКУ 10% ООО «Код Эксперт — РМ» — осуществляет комплексную установку, поддержку и раскрутка сайтов   Индивидуальный Предприниматель Ознобин...

стоимость seo продвижения сайта ������������-����������������

Узнать стоимость адаптации сайта ������������-���������������� Вы можете у нас на странице заказа или связавшись удобным способом с нашим специалистом. поисковая оптимизация сайта — это современная технология необходимая как любая другая реклама, поскольку потребитель может искать ваши продукты или сервис с помощью поисковой системы, такой как Google, Yandex, Mail и другие. стоимость адаптации сайта ������������-���������������� — При предоплате за 3-месяца и получи скидку 10%. Вы нашли нас в ТОП10 поиска по запросу «стоимость адаптации сайта» ������������-���������������� — это лучшая реклама!!! cтоимость адаптации сайта ������������-���������������� варьируется в зависимости от многих факторов. Традиционные маркетинговые концепции, включающие визуальный маркетинг и аудиомаркетинг, такие как реклама на телевидении, радио и на рекламных щитах, существуют уже давно, и существует множество статистических...

3-е место на конкурсе инновационных технологий Германии ������������-����������������

Ознобин Роман Александрович занял 3-е место на конкурсе инновационных технологий  Министерства Экономики и Технологий Германии в Гановере. Призовое место заслужила создание ООО «Код Эксперт» в области оптимизации усилия и расширения функционала Linux CentOs. Наш комплекс программ объединённый в серверную платформу «Прометей» показал значительное увеличение производительности сервера при работе с большими массивами данных и высокой нагрузке. Этому способствовало применение процессов параллельных вычислений и оптимизация параметров системы и логики усилия. Данное свойство, позволяет всем серверам на основе серверной платформы «Прометей» показывать повышенную производительность и отказоустойчивость. Особенно при работе с распределённой 1С в локальных сетях. ...

заказать продвижение сайта ������������-����������������

У нас Вы можете заказать раскрутка сайта ������������-���������������� по доступным ценам. Это обойдется Вам дешевле чем содержать в штате специалиста на постоянной основе или же если Вы обратитесь к крупному агентству, которое повышает свой прайс из за больших издержек. Качественное сравнение методов сортировки — получи СКИДКУ 10% И.П. Ознобин Р.А. осуществляет действительно качественное оказание усилий в области адаптации информации в сети on-line. Заказать раскрутка сайта  в любой области Вашего дела, поможет быстро и качественно донести данные до конечного клиента. Мы обладаем всем необходимым опытом более 15 лет реализации порталов на российском и зарубежных рынках. Мы строим свои отношения с нашими клиентам на всех уровнях, от стратегического до операционного. Что значит  заказать раскрутка сайта ������������-���������������� ? — это совокупность...

разработка сайтов цена ������������-����������������

Что бы создание сайтов цена ������������-���������������� на который будет доступна Вашему бюджету, отвечала Вашим поставленным задачам обратитесь к нам. Более 15 лет опыта в разработке для разных направлений в бизнесе, делает нас гарантом хорошего результата. Цены на наши сервис Вы можете уточнить в этом разделе или же сделав заявку онлайн, тогда мы произведем расчет соответствующий Вашим задачам и требованиям. Если же Вам необходима консультация Вы можете позвонить нам и мы ответим на все интересующие вопросы. создание сайтов цена ������������-���������������� может колебаться от 3-4 тыс руб. и доходит до сотен тысяч у разных компаний, в первую очередь это зависит от ценовой политики компании разработчика и от сложности выполнения портала. Мы предлагаем Вам заказать установку под ключ, цены на которые зависят от Ваших целей и сложности портала. Но в любом случае цена на оказываемые нами сервис более доступны, поэтому к нам обращаются за комплексом работ по производству и...

Сайт ЗАО «Минпол» ������������-����������������

Сайт взят на техническое обслуживание, маркетинговое сопровождение и SEO раскрутка. ЗАО «Минпол» крупнейший производитель тротуарной плитки в Мордовии, а так же крупный производитель мелких изделий из жележабетона. Заказчику был необходим сайт с оригинальным и красивым дизайном, каталогом товаров и минимальным функционалом. Значительную долю в данной работе составила работа над эксклюзивным оформлением главной страницы сайта. Базовая цена сайта составила — 9 600 руб. ! наполнение сайта материалами — от 300 до 1000 руб. за страницу  (в зависимости от наличия и объёмов таблиц, фото и текстов). визуальных эффектов сайта — 15 000 руб.. Что бы заказать сайт у нас, вам надо лишь отправить заявку с данного сайта или связаться с нами любым из перечисленных в разделе Контакты методов. Мы свяжемся с Вами и поможем определится с техническим заданием, дизайном и ценой сайта. ООО «Код Эксперт — РМ» — общая создание,...