8-(927)-977-80-70 web-i-seo@yandex.ru
Режим работы: 10-00 до 20-00 МСК

Вы нашли нас по запросу -"Сравнение методов объединения двух отсортированных списков в Python " - это лучшая рекомендация для подрядчика SEO продвижения в городе или по России!

Сравнение методов объединения двух отсортированных списков в Python

Пусть у нас есть два списка (для простоты из целых чисел), каждый из которых отсортирован. Хотим объединить их в один список, который тоже должен быть отсортирован. Эта задача наверняка всем знакома, используется, например, при сортировке слиянием.

 

 

Способов реализации (особенно на python) достаточно много. Давайте разберем некоторые из них и сравним затрачиваемое время на разных входных данных.

Основная идея алгоритма заключается в том, что, поместив по одной метке в начале каждого списка, будем сравнивать отмеченные элементы, брать меньший из них и передвигать метку в его списке на следующее число. Когда один из списков кончается, нужно добавить остаток второго в конец.

 

Входные данные не меняются

Пусть есть два списка list1 и list2.

Начнем с самого простого алгоритма: обозначим метки за i и j и будем брать меньший из list1[i]list2[j] и увеличивать его метку на единицу, пока одна из меток не выйдет за границу списка.

При первом сравнении мы выберем минимальный элемент из двух минимальных в своем списке и подвинемся на следующий элемент, поэтому наименьший элемент из двух списков будет стоять на нулевом месте результирующего. Дальше несложно по индукции доказать, что далее слияние пройдет верно.

Перейдем к коду:

def simple_merge(list1, list2):
    i, j = 0, 0
    res = []
    while i < len(list1) and j < len(list2):
        if list1[i] < list2[j]:
            res.append(list1[i])
            i += 1
        else:
            res.append(list2[j])
            j += 1
    res += list1[i:]
    res += list2[j:] 
    # один из list1[i:] и list2[j:] будет уже пустой, поэтому добавится только нужный остаток
    return res

 

Заметим, что в данном коде используется только перемещение вперед по списку. Поэтому будет достаточно работать с итераторами. Перепишем алгоритм с помощью итераторов.

 

Еще изменим обработку концов списков, так как теперь мы не умеем копировать сразу до конца. Будем обрабатывать элементы до того, когда оба итератора дойдут до конца, при этом, если один уже оказался в конце, будем просто брать из второго.

 

def iter_merge(list1, list2):
    result, it1, it2 = [], iter(list1), iter(list2)
    el1 = next(it1, None)
    el2 = next(it2, None)
    while el1 is not None or el2 is not None:
        if el1 is None or (el2 is not None and el2 < el1):
            result.append(el2)
            el2 = next(it2, None)
        else:
            result.append(el1)
            el1 = next(it1, None)
    return result

 

В этой реализации можно вместо добавления по одному элементу (result.append()) собрать генератор, а потом из него получить список. Для этого напишем отдельную функцию, которая будет строить генератор, а основная функция сделает из него список.

 

def gen_merge_inner(it1, it2):
    el1 = next(it1, None)
    el2 = next(it2, None)
    while el1 is not None or el2 is not None:
        if el1 is None or (el2 is not None and el2 < el1):
            yield el2
            el2 = next(it2, None)
        else:
            yield el1
            el1 = next(it1, None)

def gen_merge(list1, list2):
    return list(gen_merge_inner(iter(list1), iter(list2))) # из генератора получаем список

 

Встроенные реализации

Рассмотрим еще несколько способов слияния через встроенные в python функции.

  • merge из heapq. Как говорит документация, эта функция делает именно то, что мы хотим, и больше: объединяет несколько итерируемых объекта, можно задать ключ, можно сортировать в обратном порядке.
    Тогда нам нужно просто импортировать и использовать:

    from heapq import merge
    
    def heapq_merge(list1, list2):
        return list(merge(list1, list2)) # тоже возвращает генератор
  • Counter из collectionsCounter умеет считать количество вхождений каждого из элементов, выдавать их в тех количествах, в которых они входят, и еще несколько полезных вещей, которые сейчас не нужны (например, несколько самых часто встречающихся элементов).
    Воспользуемся gen_merge_inner для слияния элементов Counter(list1) и Counter(list2):

    def counter_merge(list1, list2):
        return list(gen_merge_inner(Counter(list1).elements(), Counter(list2).elements()))
  • И, наконец, просто сортировка. Объединяем и сортируем заново. Тут есть два варианта реализация через sort() и sorted(). Сразу сравним их:
list1 = [i for i in range(1, 200000, 3)]
list2 = [i for i in range(2, 250000, 4)]
%timeit res1 = sorted(list1 + list2)
%timeit res2 = list1 + list2; res2.sort()
6.73 ms ± 64.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.43 ms ± 38.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

В результате:

    def sort_merge(list1, list2):
        return (list1 + list2).sort()

Если можно менять исходные списки

 

Предположим, что после слияния старые списки больше не нужны (как обычно и случается). Тогда можно написать еще один способ. Будем как и раньше сравнивать нулевые элементы списков и вызывать pop(0) у списка с меньшим, пока один из списков не закончится.

 

def pop_merge(list1, list2):
    result = []
    while list1 and list2:
        result.append((list1 if list1[0] < list2[0] else list2).pop(0))
    return result + list1 + list2

 

Получили простенькую функцию на 4 строчки, но использовать дальше исходные списки не получится. Можно их скопировать, потом работать с копиями, но это потребует много дополнительного времени. Здесь будут проблемы с тем, что удаление нулевого элемента очень дорогое. Поэтому еще одна модификация будет заключаться в том, что мы будем вместо удаления из начала списка использовать удаление из конца, но придется в конце развернуть списки.

 

def reverse_pop_merge(list1, list2):
    result = []
    while list1 and list2:
        result.append((list1 if list1[-1] > list2[-1] else list2).pop(-1))
    return (result + list1[-1::-1] + list2[-1::-1])[-1::-1]

 

Сравнение

 

Пора перейти к самому интересному.
Составим список функций, которые будем сравнивать:

 

  • simple_merge
  • iter_merge
  • gen_merge
  • heapq_merge
  • counter_merge
  • sort_merge
  • pop_merge
  • reverse_pop_merge

 

Будем измерять время работы с помощью модуля timeit. Код можно посмотреть здесь.

 

Разберем несколько ситуаций: оба списка примерно одинакового размера, один список большой, а второй маленький, количество вариантов элементов большое, количество вариантов маленькое. Кроме этого проведем просто общий случайный тест.

Тест первый

 

Проведем общий тест, размеры от $1$ до $10^5$, элементы от $1$ до $10^6$.

 

Отдельно сравним pop и reverse_pop:

 

 

pop_merge тратит колоссально больше времени в общем случае, как и ожидалось.

 

Не будем учитывать здесь огромный pop_merge, чтобы лучше видеть разницу между другими:

 

 

reverse_pop_merge показал себя относительно неплохо по сравнению с ручной реализацией и heapq_merge.

 

Методы на итераторах работают еще быстрее, при этом видно, что получилось выгоднее построить генератор, чем добавлять элементы в список.

 

Тест второй, сравнимые размеры

 

Размеры будут принадлежать отрезку $[50x, 50(x+1))$, а $x$ увеличиваем, начиная с $1$. Шаг $50$.

 

 

Как уже можно видеть pop_merge при небольшом размере списков еще ведет себя как heapq_merge, а дальше обгоняет всех.

 

Тест третий, один маленький, второй большой

 

Размер первого равен $x$, размер второго $10^4 + 100x$.

 

 

В самом начале (на очень маленьких списках) reverse_pop_merge обгоняет всех, кроме sort_merge, но на чуть больших все выходит на стандартные позиции.

 

Тест четвертый, много повторных

 

Размеры фиксированы, а количество элементов увеличивается на $5$, начиная с $1$.

 

 

Как видно, на достаточно малых количествах counter_merge оказывается быстрее reverse_pop_merge и heapq_merge, но потом он отстает.

 

Чемпионы

Абсолютным победителем оказался sort_merge! Гораздо быстрее просто отсортировать список заново, чем использовать вроде бы линейные от длины списков функции.

На втором месте в подавляющем большинстве случаев идет gen_merge, за ним следует iter_merge.

Остальные методы используют еще больше времени, но некоторые в каких-то крайних случаях достигают результатов 2-3 мест.

Дата изменения


Индивидуальный Предприниматель Ознобин Р.А.
8-927-977-80-70
Адрес: г. , ул. Строителей, строение 12

Полезная информация по теме - Сравнение методов объединения двух отсортированных списков в Python

Рассылка почты по Вашим и Наши базам

Только для партнёров ! (не занимаемся спамом на заказ !) Только нашим партнёрам по другим порталам, как маркетинговую поддержку Ваших сайтов и дела, мы предлагаем Вам организацию почтовой рассылки Ваших новостей и предложений, по Вашим адресным базам и по набору наших баз Рассылка «новости» по Вашей базе адресов — 0,25 рубля за штуку (минимальная сумма 1500 руб.) Рассылка «новости» по нашим базам данных (сгруппированы по роду занятий) — 1 рубль за адрес Наши рассылки отличаются — Высокая степень прохождения спам

разработка сайта под ключ

По выгодным ценам создание сайта под ключ  от маленьких визиток до крупных автоматизированных порталов, любой сложности, короткие сроки большие скидки при комплексном заказе Первое Ваш вебсайт — это конечно лицо компании в web сети, где очень важно правильно адаптированный портал  под направление дела и соответствующий бренду компании Второе Ваш on-line портал должен зарабатывать а значит сделан так, что бы он мог правильно доносить данные, продавать больше и качественнее или удобнее для

Разработчикам и Франчайзе 1С

Здравствуйте Всех кто трудится на поле внедрения и разработки решений 1С : Платформа 8 2 и выше Мы приглашаем к сотрудничеству в области замещения серверного ПО Microsoft Windows Server 20xx на серверное решение на основе Серверной платформы «Прометей» Наши сервера и СП «Прометей» основаны на базе ОС Linux CentOs 7, и включают в себя комплекс программ для адаптации и оптимизации усилия Servers с 1С Наша ценовая политика приятно Вас порадует! И позволит Вам успешно конкурировать по общей цене внедрения в сравнении с конкурентами! Сервера СП

Интернет приемная медецинского СПА Салона

Сайт медицинского СПА салона ЗАО «РеВиталь» ЗАО «Ревиталь» занимается оказанием высококвалифицированных СПА усилий в Москве а Корбейском переулке У СПА Центра есть своя прогулочная территория, сауна, ресторан, бассейн, номера для отдыха ЗАО «Ревиталь» решили заказать сайт с технологичным дизайном, возможностью добавлять новости и несколькими фото галереями данного сайта составила 27 500 руб. Для того что бы заказать сайт у нас, вам надо лишь отправить заявку нам на почте с данного сайта или связаться с нами любым из

стоимость разработки сайта

стоимость разработки сайта  зависит от сложности исполнения портала, его индивидуальности и функционала, но мы готовы предложить Вам создание и раскрутка по выгодным ценам в зависимости от поставленной задачи Если Вы задумались заказать создание портала, то надо знать, что стоимость разработки сайта  не всегда гарантирует качество исполнения портала Основным критерием выбора разработчика должен быть его опыт в этой области Узнайте сколько будет стоить создание портала под ключ, которая в первую очередь зависит от цели Вашего 

разработка сайта визитки

создание сайта визитки  для дела предназначена для средних компаний и малых предприятий, которые хотят передавать данные, продавать свою продукцию, предоставлять свои бизнес-данные и другую важную данные для функционирования своего дела, компании или предприятия Мы предлагаем Вам создание создание сайта визитка по доступной цене, которая сэкономит Ваш бюджет и поможет вывести Ваш бизнес на новый уровень, потому что теперь Вас смогут найти в сети on-line Заказывая комплекс усилий по оптимизации, Вы получите

Сайт ЗАО «Минпол»

Сайт взят на техническое обслуживание, маркетинговое сопровождение и SEO раскрутка ЗАО «Минпол» крупнейший производитель тротуарной плитки в Мордовии, а так же крупный производитель мелких изделий из жележабетона Заказчику был необходим сайт с оригинальным и красивым дизайном, каталогом товаров и минимальным функционалом Значительную долю в данной работе составила работа над эксклюзивным оформлением главной страницы сайта Базовая цена сайта составила — 9 600 руб. ! наполнение сайта материалами — от 300 до 1000 руб. за

стоимость медицинского сайта

Готовы Вам оказать сервис по производству и оптимизации информации о Ваших товарах и усилийах стоимость медицинского сайта  Вы можете узнать ознакомившись с нашими ценами по производству или разработки торговой on-line площадки, а так же предлагаем Вам ознакомиться и выбрать подходящий тариф для адаптации медицинского сайта Стоимость медицинского сайта   может включать в себя установку концепции, его индивидуальный дизайн, проработку юзабилити, покупку домена и размещение его на серверной платформе Но задумайтесь о том, как люди будут